Abstract

BackgroundFatigue is a frequent and serious symptom in patients with Multiple Sclerosis (MS). However, to date there are only few methods for the objective assessment of fatigue. The aim of this study was to develop a method for the objective assessment of motor fatigue using kinematic gait analysis based on treadmill walking and an infrared-guided system.Patients and methodsFourteen patients with clinically definite MS participated in this study. Fatigue was defined according to the Fatigue Scale for Motor and Cognition (FSMC). Patients underwent a physical exertion test involving walking at their pre-determined patient-specific preferred walking speed until they reached complete exhaustion. Gait was recorded using a video camera, a three line-scanning camera system with 11 infrared sensors. Step length, width and height, maximum circumduction with the right and left leg, maximum knee flexion angle of the right and left leg, and trunk sway were measured and compared using paired t-tests (α = 0.005). In addition, variability in these parameters during one-minute intervals was examined. The fatigue index was defined as the number of significant mean and SD changes from the beginning to the end of the exertion test relative to the total number of gait kinematic parameters.ResultsClearly, for some patients the mean gait parameters were more affected than the variability of their movements while other patients had smaller differences in mean gait parameters with greater increases in variability. Finally, for other patients gait changes with physical exertion manifested both in changes in mean gait parameters and in altered variability. The variability and fatigue indices correlated significantly with the motoric but not with the cognitive dimension of the FSMC score (R = -0.602 and R = -0.592, respectively; P < 0.026).ConclusionsChanges in gait patterns following a physical exertion test in patients with MS suffering from motor fatigue can be measured objectively. These changes in gait patterns can be described using the motor fatigue index and represent an objective measure to assess motor fatigue in MS patients. The results of this study have important implications for the assessments and treatment evaluations of fatigue in MS.

Highlights

  • Fatigue is a frequent and serious symptom in patients with Multiple Sclerosis (MS)

  • The fatigue index for this patient group ranged from 0.33-0.92, the mean index ranged from 0.00-0.92 and the variability index ranged from 0.25-0.92 (Table 1)

  • One patient showed relatively regular patterns of circumduction with their right leg at the beginning of the physical exertion test with a shift in circumduction to smaller values and more variable wave patterns at the end of the physical exertion test (Figure 2). Another patient showed similar mean values for their knee flexion angles during one minute but had clear irregularities in their pattern manifesting as more irregular knee extension movements and additional irregularities close to full knee extension (Figure 3)

Read more

Summary

Introduction

Fatigue is a frequent and serious symptom in patients with Multiple Sclerosis (MS). The most common and most debilitating symptom [4,5,6] experienced by 87-92% of all persons affected by MS is fatigue, recently termed ‘pathological exhaustion’ [7], which is defined as ‘a subjective lack of physical or mental energy that is perceived by the individual or caregiver to interfere with activities of daily living’ [8]. Current management of fatigue in MS includes physical-based options (such as aerobic exercise, energy conservation strategies, and psychological and dietary interventions) [17,18,19], cooling [20,21], measures to ameliorate conduction block [22] and the use of other pharmacological agents [23,24]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.