Abstract

Given the driving advances on CNNs (Convolutional Neural Networks) [1], deep neural networks being deployed for accurate detection and semantic reconstruction in SLAM (Simultaneous Localization and Mapping) has become a trend. However, as far as we know, almost all existing methods focus on design a specific CNN architecture for single task. In this paper, we propose a novel framework which employs a general object detection CNN to fuse with a SLAM system towards obtaining better performances on both detection and semantic segmentation in 3D space. Our approach first use CNN-based detection network to obtain the 2D object proposals which can be used to establish the local target map. We then use the results estimated from SLAM to update the dynamic global target map based on the local target map obtained by CNNs. Finally, we are able to obtain the detection result for the current frame by projecting the global target map into 2D space. On the other hand, we send the estimation results back to SLAM and update the semantic surfel model in SLAM system. Therefore, we can acquire the segmentation result by projecting the updated 3D surfel model into 2D. Our fusion scheme privileges in object detection and segmentation by integrating with SLAM system to preserve the spatial continuity and temporal consistency. Evaluation performances on four datasets demonstrate the effectiveness and robustness of our method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call