Abstract

Traditional pointwise verification scores are not always appropriate for the evaluation of high‐resolution precipitation forecasts because of double‐penalty problems. An alternative approach, based on the identification of homogeneous rainfall areas called “precipitating objects”, allows forecast evaluation at a larger and thus more predictable scale, and specific information about the nature of errors (e.g. location, size, intensity) can be obtained. A novel object detection method is first introduced and the object‐based verification of precipitation forecasts from the convective‐scale deterministic and ensemble models Arome and Arome‐EPS is then discussed, using several scores and diagnostics. Three types of precipitating objects characterizing total, moderate and heavy rainfall are considered. In the second part, object‐based metrics are used to compute objective weights for time‐lagged ensemble forecasts, based on their performance at early forecast ranges. The weights obtained clearly depend on the meteorological situation and on the precipitation type, reflecting for instance the lower predictability of moderate precipitation compared to total precipitation. There is also a dependence on the production time with, on average, slightly larger and more homogeneous weights associated with the most recent run. However, in some situations of moderate and heavy rainfall, a relevant signal can be extracted from older runs. It is finally shown that object‐based weights are better suited than classical quadratic weights to improve nowcasting performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.