Abstract

Sparse representation has been applied to the object tracking problem. Mining the self-similarities between particles via multitask learning can improve tracking performance. However, some particles may be different from others when they are sampled from a large region. Imposing all particles share the same structure may degrade the results. To overcome this problem, we propose a tracking algorithm based on robust multitask sparse representation (RMTT) in this letter. When we learn the particle representations, we decompose the sparse coefficient matrix into two parts in our algorithm. Joint sparse regularization is imposed on one coefficient matrix while element-wise sparse regularization is imposed on another matrix. The former regularization exploits self-similarities of particles while the later one considers the differences between them. Experiments on the benchmark data show the superior performance over other state-of-art algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.