Abstract
This paper presents a particle filter-based visual tracking method with online feature selection mechanism. In color-based particle filter algorithm the weights of particles do not always represent the importance correctly, this may cause that the object tracking based on particle filter converge to a local region of the object. In our proposed visual tracking method, the Bhattacharyya distance and the local discrimination between the object and background are used to define the weights of the particles, which can solve the existing local convergence problem. Experiments demonstrates that the proposed method can work well not only in single object tracking processes but also in multiple similar objects tracking processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.