Abstract

Abstract In order to improve the performance of tracking, we propose a new online tracking method based on classification and adaptive fused feature. We first label a few positive and negative samples, train the classifier by the online SSSM (Semi-Supervised Support Vector Machine) learning and these labelled samples, and then locate the position of the object from the next frame according to the trained classifier. In order to adapt more of the new samples, we need to update the classifier by finding new samples with high confident value obtained by the trained classifier and add them into the online SSSM. Finally we also update the object model by the online incremental PCA (Principal Component Analysis) because of background clutter, heavy occlusion and complicated object appearance changes. Compared with the basic mean shift tracking and the ensemble tracking method, experimental results show that our tracking method is able to effectively handle heavy occlusion and background clutter in some challenge videos including some thermal videos.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.