Abstract
Image morphing techniques can create a smooth transition between two images. However, one of the main weakness of the image morphing technique is that intermediate images in the transition often have physically incorrect shading such as highlights and shadows. Moreover, we cannot alter viewing and lighting conditions when creating the intermediate images. That is because those images are obtained by simply interpolating pixel intensities of the two 2D images without knowledge of 3D object shape and reflectance properties. In this context, 3D shape morphing techniques have a definite advantage in that arbitrary viewing and illumination conditions can be used for creating new images. Unfortunately, previous 3D morphing techniques do not account for object surface reflectance properties or reflection models when generating intermediate images. This often results in undesired shading artifacts. In this paper, we consider a new approach for 3D shape and reflectance morphing of two real 3D objects. Our morphing method consists of two components: shape and reflectance property measurement, and smooth interpolation of those measured properties. The measured shape and reflectance parameters are used to compute intermediate shape and reflectance parameters. Finally, the computed shape and reflectance parameters are used to render intermediate images which represent a smooth transition between the two objects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.