Abstract
Object searching is the identification of an object in an image or video. There are several approaches to object detection, including template matching in computer vision. Template matching uses a small image, or template, to find matching regions in a larger image. In this paper, we propose a robust object searching method based on adaptive combination template matching. We apply a partition search to resize the target image properly. During this process, we can make efficiently match each template into the sub-images based on normalized sum of squared differences or zero-mean normalized cross correlation depends on the class of the object location such as corresponding, neighbor, or previous location. Finally, the template image is updated appropriately by an adaptive template algorithm. Experiment results show that the proposed method outperforms in object searching.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.