Abstract
This work presents a vision system based on the YOLO algorithm to identify static objects that could be obstacles in the path of a mobile robot. In order to identify the objects and its distances a Microsoft Kinect sensor was used. In addition, a Nvidia Jetson TX2 GPU was used to increase the image processing algorithm performance. Our experimental results indicate that the YOLO network has detected all the predefined obstacles for which it has been trained with good reliability and the calculus of the distance using the depth information returned by Microsoft Kinect had an error below of 3,64%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.