Abstract

Many previous studies of object recognition have found view-dependent recognition performance when view changes are produced by rotating objects relative to a stationary viewing position. However, the assumption that an object rotation is equivalent to an observer viewpoint change ignores the potential contribution of extraretinal information that accompanies observer movement. In four experiments, we investigated the role of extraretinal information on real-world object recognition. As in previous studies focusing on the recognition of spatial layouts across view changes, observers performed better in an old/new object recognition task when view changes were caused by viewer movement than when they were caused by object rotation. This difference between viewpoint and orientation changes was due not to the visual background, but to the extraretinal information available during real observer movements. Models of object recognition need to consider other information available to an observer in addition to the retinal projection in order to fully understand object recognition in the real world.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.