Abstract

<p><span>Human recognize objects in complex natural images very fast within a fraction of a second. Many computational object recognition models inspired from this powerful ability of human. The Human Visual System (HVS) recognizes object in several processing layers which we know them as hierarchically model. Due to amazing complexity of HVS and the connections in visual pathway, computational modeling of HVS directly from its physiology is not possible. So it considered as a some blocks and each block modeled separately. One models inspiring of HVS is HMAX which its main problem is selecting patches in random way. As HMAX is a hierarchical model, HMAX can enhanced with enhancing each layer separately. In this paper instead of random patch extraction, Desirable Patches for HMAX (DPHMAX) will extracted. HVS for extracting patch first selected patches with more information. For simulating this block patches with more variance will be selected. Then HVS will chose patches with more similarity in a class. For simulating this block one algorithm is used. For evaluating proposed method, Caltech 5 and Caltech101 datasets are used. Results show that the proposed method (DPMAX) provides a significant performance over HMAX and other models with the same framework.</span></p>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.