Abstract
Synthetic aperture radar (SAR) at the terahertz (THz) spectrum has emerging short-range applications. In comparison to the microwave spectrum, the THz spectrum is limited in propagation range but benefits from high spatial resolution. The THz SAR is of significant interest for several applications which necessitate the mapping of indoor environments to support various endeavors such as rescue missions, map-assisted wireless communications, and household robotics. This paper addresses the augmentation of the high-resolution indoor mapped environment for object recognition, which includes detection, localization, and classification. Indoor object recognition is currently dominated by the usage of optical and infrared (IR) systems. However, it is not widely explored by radar technologies due to the limited spatial resolution at the most commonly used microwave frequencies. However, the THz spectrum provides a new paradigm of possible adaptation of object recognition in the radar domain by providing image quality in good compliance to optical/IR systems. In this paper, a multi-object indoor environment is foremost mapped at the THz spectrum ranging from 325 to 500 GHz in order to investigate the imaging in highly scattered environments and accordingly create a foundation for detection, localization, and classification. Furthermore, the extraction and clustering of features of the mapped environment are conducted for object detection and localization. Finally, the classification of detected objects is addressed with a supervised machine learning-based support vector machine (SVM) model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.