Abstract
Genetically-modified mice without the dopamine transporter (DAT) are hyperdopaminergic, and serve as models for studies of addiction, mania and hyperactive disorders. Here we investigated the capacity for object recognition in mildly hyperdopaminergic mice heterozygous for DAT (DAT +/−), with synaptic dopaminergic levels situated between those shown by DAT −/− homozygous and wild-type (WT) mice. We used a classical dopamine D2 antagonist, haloperidol, to modulate the levels of dopaminergic transmission in a dose-dependent manner, before or after exploring novel objects. In comparison with WT mice, DAT +/− mice showed a deficit in object recognition upon subsequent testing 24h later. This deficit was compensated by a single 0.05mg/kg haloperidol injection 30min before training. In all mice, a 0.3mg/kg haloperidol injected immediately after training impaired object recognition. The results indicate that a mild enhancement of dopaminergic levels can be detrimental to object recognition, and that this deficit can be rescued by a low dose of a D2 dopamine receptor antagonist. This suggests that novel object recognition is optimal at intermediate levels of D2 receptor activity.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.