Abstract

Autonomous driving requires reliable and accurate detection and recognition of surrounding objects in real drivable environments. Although different object detection algorithms have been proposed, not all are robust enough to detect and recognize occluded or truncated objects. In this paper, we propose a novel hybrid Local Multiple system (LM-CNN-SVM) based on Convolutional Neural Networks (CNNs) and Support Vector Machines (SVMs) due to their powerful feature extraction capability and robust classification property, respectively. In the proposed system, we divide first the whole image into local regions and employ multiple CNNs to learn local object features. Secondly, we select discriminative features by using Principal Component Analysis. We then import into multiple SVMs applying both empirical and structural risk minimization instead of using a direct CNN to increase the generalization ability of the classifier system. Finally, we fuse SVM outputs. In addition, we use the pre-trained AlexNet and a new CNN architecture. We carry out object recognition and pedestrian detection experiments on the Caltech-101 and Caltech Pedestrian datasets. Comparisons to the best state-of-the-art methods show that the proposed system achieved better results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.