Abstract

Visual scenes tend to be very complex: a multitude of overlapping surfaces varying in shape, color, texture, and depth relative to the observer. Yet most observers effortlessly perceive that the visual environment is composed of distinct objects, laid out across space, each with a particular shape that can be inferred from partial views and incomplete information. Moreover, observers generally expect objects to be continuous across space and time, to have a certain shape, and to be solid in three-dimensional (3D) space. The cortical visual system processes information for objects first by coding visual features, then by linking features into units, and last by interpretation of units as objects that may be recognizable or otherwise relevant to the observer. This way of conceptualizing object perception maps roughly onto processes of lower-, middle-, and higher-level visual processing that have long formed the basis for investigations of visual perception in adults, as well as theories of object perception, the ways visual deprivation reduces object perception skills, and the developmental time course of object perception in infancy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.