Abstract

Testing is a difficult and costly activity in the development of object-oriented programs. The challenge is to come up with a sufficient set of test scenarios, out of the typically huge volume of possible test cases, to demonstrate correct behavior and acceptable quality of the software. This can be reformulated as a search problem to be solved by sophisticated heuristic search techniques such as evolutionary algorithms. The goal is to find an optimal set of test cases to achieve a given test coverage criterion. This chapter introduces and evaluates genetic programming as a heuristic search algorithm which is suitable to evolve object-oriented test programs automatically to achieve high coverage of a class. It outlines why the object paradigm is different to the procedural paradigm with respect to testing, and why a genetic programming approach might be better suited than the genetic algorithms typically used for testing procedural code. The evaluation of our implementation of a genetic programming approach, augmented with program analysis techniques for better performance, indicates that object-oriented software testing with genetic programming is feasible in principle. However, having many adjustable parameters, evolutionary search heuristics have to be fined-tuned to the optimization problem at hand for optimal performance, and, therefore, represent a difficult optimization problem in their own right.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.