Abstract
A Bayesian hierarchical model is presented to classify very high resolution (VHR) images in a semisupervised manner, in which both a maximum entropy discrimination latent Dirichlet allocation (MedLDA) and a bilateral filter are combined into a novel application framework. The primary contribution of this paper is to nullify the disadvantages of traditional probabilistic topic models on pixel-level supervised information and to achieve the effective classification of VHR remote sensing images. This framework consists of the following two iterative steps. In the training stage, the model utilizes the central labeled pixel and its neighborhood, as a squared labeled image object, to train the classifiers. In the classification stage, each central unlabeled pixel with its neighborhood, as an unlabeled object, is classified as a user-provided geoobject class label with the maximum posterior probability. Gibbs sampling is adopted for model inference. The experimental results demonstrate that the proposed method outperforms two classical SVM-based supervised classification methods and probabilistic-topic-models-based classification methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.