Abstract

The urban land cover mapping and automated extraction of building boundaries is a crucial step in generating three-dimensional city models. This study proposes an object-based point cloud labelling technique to semantically label light detection and ranging (LiDAR) data captured over an urban scene. Spectral data from multispectral images are also used to complement the geometrical information from LiDAR data. Initial object primitives are created using a modified colour-based region growing technique. Multiple classifier system is then applied on the features extracted from the segments for classification and also for reducing the subjectivity involved in the selection of classifier and improving the precision of the results. The proposed methodology produces two outputs: (i) urban land cover classes and (ii) buildings masks which are further reconstructed and vectorized into three-dimensional buildings footprints. Experiments carried out on three airborne LiDAR datasets show that the proposed technique successfully discriminates urban land covers and detect urban buildings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.