Abstract

A complete multitemporal landslide inventory, ideally updated after each major event, is essential for quantitative landslide hazard assessment. However, traditional mapping methods, which rely on manual interpretation of aerial photographs and intensive field surveys, are time consuming and not efficient for generating such event-based inventories. In this letter, a semi-automatic approach based on object-oriented change detection for landslide rapid mapping and using very high resolution optical images is introduced. The usefulness of this methodology is demonstrated on the Messina landslide event in southern Italy that occurred on October 1, 2009. The algorithm was first developed in a training area of Altolia and subsequently tested without modifications in an independent area of Itala. Correctly detected were 198 newly triggered landslides, with user accuracies of 81.8% for the number of landslides and 75.9% for the extent of landslides. The principal novelties of this letter are as follows: 1) a fully automatic problem-specified multiscale optimization for image segmentation and 2) a multitemporal analysis at object level with several systemized spectral and textural measurements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.