Abstract

Neurofuzzy networks are hybrid systems that combine neural networks with fuzzy systems, and the Adaptive Neuro-Fuzzy inference system (ANFIS) is a particular case in which a fuzzy system is implemented in the framework of an adaptive neural network. This neurofuzzy approach represents an effective structure to the modeling of plant dynamics, and the oriented-object programming environments offer an intuitive way to address this task. In this paper the MODELICA object-oriented environment has been applied to the ANFIS modeling and indirect control of the heavy and light product composition in a binary methanol-water distillation column by using the adaptive Levenberg–Marquardt approach. The results obtained demonstrate the potential of the adaptive ANFIS scheme under MODELICA for the dual control of composition both for changes in set points with null stationary error even when disturbances are present.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.