Abstract

In nature, sounds from objects of interest arrive at the ears accompanied by sound waves from other actively emitting objects and by reflections off of nearby surfaces. Despite the fact that all of these waveforms sum at the eardrums, humans with normal hearing effortlessly segregate one sound source from another. Our laboratory is investigating the neural basis of this perceptual feat, often called the "cocktail party effect", using the barn owl as an animal model. The barn owl, renowned for its ability to localize sounds and its spatiotopic representation of auditory space, is an established model for spatial hearing. Here, we briefly review the neural basis of sound-localization of a single sound source in an anechoic environment and then generalize the ideas developed therein to cases in which there are multiple, concomitant sound sources and acoustical reflection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.