Abstract
In this paper we apply state-of-the-art approach to object detection and localisation by incorporating local descriptors and their spatial configuration into a generative probability model. In contrast to the recent semi- supervised methods we do not utilise interest point detectors, but apply a supervised approach where local image features (landmarks) are annotated in a training set and therefore their appearance and spatial variation can be learnt. Our method enables working in purely probabilistic search spaces providing a MAP estimate of object location, and in contrast to the recent methods, no background class needs to be formed. Using the training set we can estimate pdfs for both spatial constellation and local feature appearance. By applying an inference bias that the largest pdf mode has probability one, we are able to combine prior information (spatial configuration of the features) and observations (image feature appearance) into posterior distribution which can be generatively sampled, e.g. using MCMC techniques. The MCMC methods are sensitive to initialisation, but as a solution, we also propose a very efficient and accurate RANSAC-based method for finding good initial hypotheses of object poses. The complete method can robustly and accurately detect and localise objects under any homography.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.