Abstract
The authors present a hybrid OpenCL CPU/GPU algorithm for identification of connected structures inside black and white 3D scientific data. This algorithm exploits parallelism both at CPU and GPGPU levels, but the work is predominantly done in GPUs. The underlying context of this work is the structural characterization of composite materials via tomography. The algorithm allows us to later infer location and morphology of objects inside composite materials. Moreover, execution times are very low thus allowing us to process large data sets, but within acceptable running times. Intermediate solutions are computed independently over a partition of the spatial domain, following the data parallelism paradigm, and then integrated both at GPU and CPU levels, using parallel multi-cores. The authors consistently explore parallelism both at the CPU level, by allowing the CPU stage to run in multiple concurrent threads, and at the GPU level with massive parallelism and concurrent data transfers and kernel executions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Creative Interfaces and Computer Graphics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.