Abstract
Object drift determination is a crucial issue in long-term tracking. Most existing object drift determination criteria require manually selecting different thresholds on different datasets to determine whether the object is lost. In this case, choosing the appropriate threshold is a complex problem. An object drift determination network based on dual-template joint decision-making is proposed to address this issue. The proposed object drift determination network not only does not require selection of thresholds on different datasets, and can be used as a plug-and-play module of short-term visual tracking algorithm to achieve long-term visual tracking tasks with good generalization ability. The proposed object drift determination network is applied to four short-term baseline trackers and constructs four long-term visual tracking algorithms. Experimental results verify that all four improved algorithms significantly improve long-term visual tracking performance compared to the original algorithms. In addition, the determined speed of the object drift determination network proposed in this paper reaches 111 FPS, which has little effect on the long-term visual tracking speed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Visual Communication and Image Representation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.