Abstract
How to add more context information and bring more accurate detection is an important problem to be considered in object detection. In this paper, we propose a new object detector with enriched global context information by a pyramid feature pool module and several global activation blocks, named EGCI-Net, which is a one-stage object detector from scratch as DSOD.The global activation blocks are added into the backbone sub network of the detector to weaken the local information of the detected object feature maps and increase the global context of them. And the pyramid feature pool module produces multi-scale global context features to supervise the pyramid features by multi-scale global average pooling. Then the features obtained by the main structure are fused with the pyramid pooling features to merge into the final multibox detector. We have evaluated our detector on the Pascal VOC and MS COCO datasets. The experimental results show that our proposed detector achieves better results than DSOD and exceeds most of the existing excellent detectors, especially detects partially occluded objects and small objects well.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.