Abstract

The aim of the paper is to detect object using the combination of three algorithms: convolutional neural network (CNN) and extended speeded up robust features (SUFR) and Fuzzy inference system (FIS). Here three types of objects are considered: first, we consider RGB images of hundred different types of objects (for example anchor, laptop airplane, car etc.) taken from benchmark database; second, we take grayscale images of human fingerprint from recognized database; third, Bangla handwritten alphabet from standard database. In this paper we extend the SURF algorithm then the result of the extended SURF is applied in FIS to enhance accuracy of detection. Finally, three algorithms are combined and the accuracy of detection of combined technique is found better than individual one. The combined algorithm provides the average recognition rate for objects of first case as 94.21%, for human finger print as 92.17%%, for Bangla letter as 92.38% and for the Bangla digit as 93.69%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.