Abstract
In recent years, with the quantum leap in deep learning, self-driving vehicle as one of its applications has been gaining tremendously increasing popularity as well as making a multitude of achievements. Object detection, which has made significant contribution to driver-less vehicle, has had been applied to a tremendously wide range of fields. However, reports relevant to automatic vehicle stating that accidents are caused by Automatic driving technology, present problems pointing out that existing target detection algorithms, which are already fairly well reliable, can probably be interfered by adverse conditions such as high temperature, raise dust and transmission loss, and be not capable of providing precise output. This paper recaps on these previous classic algorithms, and their large-scale application domain. Meanwhile, this paper presents improvements focusing on enhancing the robustness of these algorithms to overcome these problems caused by adverse conditions and improve the accuracy. Thus these improvements could augment the security of these driver-less vehicles, and eventually reduce traffic accident mortality relative to self-driving vehicles and safeguard road safety, and may potentially benefit to further research.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.