Abstract
In this paper, we propose a robust and accurate background model, called grayscale arranging pairs (GAP). The model is based on the statistical reach feature (SRF), which is defined as a set of statistical pair-wise features. Using the GAP model, moving objects are successfully detected under a variety of complex environmental conditions. The main concept of the proposed method is the use of multiple point pairs that exhibit a stable statistical intensity relationship as a background model. The intensity difference between pixels of the pair is much more stable than the intensity of a single pixel, especially in varying environments. Our proposed method focuses more on the history of global spatial correlations between pixels than on the history of any given pixel or local spatial correlations. Furthermore, we clarify how to reduce the GAP modeling time and present experimental results comparing GAP with existing object detection methods, demonstrating that superior object detection with higher precision and recall rates is achieved by GAP.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.