Abstract

Real-time object detection and tracking have shown to be the basis of intelligent production for industrial 4.0 applications. It is a challenging task because of various distorted data in complex industrial setting. The correlation filter (CF) has been used to trade off the low-cost computation and high performance. However, traditional CF training strategy can not get satisfied performance for the various industrial data; because the simple sampling(bagging) during training process will not find the exact solutions in a data space with a large diversity. In this paper, we propose Dijkstra-distance based correlation filters (DBCF), which establishes a new learning framework that embeds distribution-related constraints into the multi-channel correlation filters (MCCF). DBCF is able to handle the huge variations existing in the industrial data by improving those constraints based on the shortest path among all solutions. To evaluate DBCF, we build a new dataset as the benchmark for industrial 4.0 application. Extensive experiments demonstrate that DBCF produces high performance and exceeds the state-of-the-art methods. The dataset and source code can be found at https://github.com/bczhangbczhang

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.