Abstract

Object counting is a fundamental task in remote sensing analysis. Nevertheless, it has been barely studied compared with object counting in natural images due to the challenging factors, e.g., background clutter and scale variation. This paper proposes a triple attention and scale-aware network (TASNet). Specifically, a triple view attention (TVA) module is adopted to remedy the background clutter, which executes three-dimension attention operations on the input tensor. In this case, it can capture the interaction dependencies between three dimensions to distinguish the object region. Meanwhile, a pyramid feature aggregation (PFA) module is employed to relieve the scale variation. The PFA module is built in a four-branch architecture, and each branch has a similar structure composed of dilated convolution layers to enlarge the receptive field. Furthermore, a scale transmit connection is introduced to enable the lower branch to acquire the upper branch’s scale, increasing the output’s scale diversity. Experimental results on remote sensing datasets prove that the proposed model can address the issues of background clutter and scale variation. Moreover, it outperforms the state-of-the-art (SOTA) competitors subjectively and objectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call