Abstract

This work is inspired and motivated by the sophisticated mammals sense organ of touch: vibrissa. Mammals, especially rodents, use their vibrissae, located in the snout region - mystacial vibrissae - to determine object contacts (passive mode) or to scan object surfaces (active mode). Here, we focus on the passive mode. In order to get hints for an artificial sensing prototype, we set up a mechanical model in form of a long slim beam which is one-sided clamped. We investigate in a purely analytical way a quasi-static sweep of the beam along a given profile, where we assume that the profile boundary is strictly convex. This sweeping procedure shows up in two phases, which have to be distinguished in profile contact with the tip and tangentially contact (between tip and base). The analysis eventuates in a phase decision criterion and in a formula for the contact point. These are the main results. Moreover, based on the observables of the problem, i.e. the clamping moment and the clamping forces, which are the only information the animal relies on, a reconstruction of the profile is possible - even with added uncertainty mimicking noise in experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.