Abstract
Son yıllarda, kentsel alanlarda yapılan analizler ve değişimlerin tespitinin hızlı ve güvenilir şekilde gerçekleştirilmesi konusundaki çalışmalarda artış olmuştur. Bu doğrultuda, binaların sınıflandırılması bilgisayarlı görünün ön plana çıkan güncel konularından biridir. Birçok alanda olduğu gibi bu konuda da derin öğrenme mimarilerinin kullanımı trend uygulamalar arasındadır. Bina ayak izinin belirlenmesi amacıyla evrişimsel sinir ağları (ESA) kullanılarak semantik segmentasyon uygulamaları yaygınlaşmıştır. Ancak derin öğrenme ile segmentasyon işlemleri sonrası elde edilen tahmin görüntülerinde karşılaşılan problemlerin başında tuz-biber etkisiyle oluşmuş gürültüler gelmektedir. Bu çalışmada güncel evrişimsel sinir ağları (ESA) mimarilerinden olan U-Net ve SegNet algoritmalarının kullanımının, Nesne-Tabanlı Görüntü Analizinin (NTGA), Çoklu-Çözünürlüklü Bölütleme (ÇÇB) algoritmasıyla entegrasyonu önerilmiştir. Deneyler çok yüksek çözünürlüklü uydu görüntülerinden (Gaofen-2, Worldview-2 ve Ikonos) oluşan açık paylaşımlı Wuhan Üniversitesi Bina Çıkarımı Veriseti (WHUBED) üzerinde gerçekleştirilmiştir. Önerilen yaklaşım, genel doğruluk, F1 skor ve IoU metriklerinde, sadece ESA kullanımıyla elde edilen tahmin sonuçlarına göre iyileştirmeler sağlamıştır. Bina sınıflandırılması ile elde edilen haritalar karşılaştırılmalı görseller olarak son kısımda sunulmuştur.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.