Abstract

This study proposed a multi-scale, object-based classification analysis of SPOT-5 imagery to map Moso bamboo forest. A three-level hierarchical network of image objects was developed through multi-scale segmentation. By combining spectral and textural properties, both the classification tree and nearest neighbour classifiers were used to classify the image objects at Level 2 in the three-level object hierarchy. The feature selection results showed that most of the object features were related to the spectral properties for both the classification tree and nearest neighbour classifiers. Contextual information characterized by the composition of classified image objects using the class-related features assisted the detection of shadow areas at Levels 1 and 3. Better classification results were achieved using the nearest neighbour algorithm, with both the producer’s and user’s accuracy higher than 90% for Moso bamboo and an overall accuracy of over 85%. The object-based approach toward incorporating textural and contextual information in classification sequence at various scales shows promise in the analysis of forest ecosystems of a complex nature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.