Abstract

PurposeArtificial intelligence-enabled techniques can process large amounts of surgical data and may be utilized for clinical decision support to recognize or forecast adverse events in an actual intraoperative scenario. To develop an image-guided navigation technology that will help in surgical education, we explored the performance of a convolutional neural network (CNN)-based computer vision system in detecting intraoperative objects.MethodsThe surgical videos used for annotation were recorded during surgeries conducted in the Department of Surgery of Tokyo Women’s Medical University from 2019 to 2020. Abdominal endoscopic images were cut out from manually captured surgical videos. An open-source programming framework for CNN was used to design a model that could recognize and segment objects in real time through IBM Visual Insights. The model was used to detect the GI tract, blood, vessels, uterus, forceps, ports, gauze and clips in the surgical images.ResultsThe accuracy, precision and recall of the model were 83%, 80% and 92%, respectively. The mean average precision (mAP), the calculated mean of the precision for each object, was 91%. Among surgical tools, the highest recall and precision of 96.3% and 97.9%, respectively, were achieved for forceps. Among the anatomical structures, the highest recall and precision of 92.9% and 91.3%, respectively, were achieved for the GI tract.ConclusionThe proposed model could detect objects in operative images with high accuracy, highlighting the possibility of using AI-based object recognition techniques for intraoperative navigation. Real-time object recognition will play a major role in navigation surgery and surgical education.Supplementary InformationThe online version contains supplementary material available at 10.1007/s11548-021-02434-w.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.