Abstract

AbstractWithin human Intent Recognition (IR), a popular approach to learning from demonstration is Inverse Reinforcement Learning (IRL). IRL extracts an unknown reward function from samples of observed behaviour. Traditional IRL systems require large datasets to recover the underlying reward function. Object affordances have been used for IR. Existing literature on recognizing intents through object affordances fall short of utilizing its true potential. In this paper, we seek to develop an IRL system which drives human intent recognition along with the capability to handle high dimensional demonstrations exploiting the capability of object affordances. An architecture for recognizing human intent is presented which consists of an extended Maximum Likelihood Inverse Reinforcement Learning agent. Inclusion of Symbolic Conceptual Abstraction Engine (SCAE) along with an advisor allows the agent to work on Conceptually Abstracted Markov Decision Process. The agent recovers object affordance based reward function from high dimensional demonstrations. This function drives a Human Intent Recognizer through identification of probable intents. Performance of the resulting system on the standard CAD-120 dataset shows encouraging result.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.