Abstract

Object affordance detection, which aims to understand functional attributes of objects, is of great significance for an autonomous robot to achieve a humanoid object manipulation. In this paper, we propose a novel relationship-aware convolutional neural network, which takes the symbiotic relationship between multiple affordances and the combinational relationship between the affordance and objectness into consideration, to predict the most probable affordance label for each pixel in the object. Different from the existing CNN-based methods that rely on separate and intermediate object detection step, our proposed network directly produces the pixel-wise affordance maps from an input image in an end-to-end manner. Specifically, there are three key components in our proposed network: Coord-ASPP module introducing CoordConv in atrous spatial pyramid pooling (ASPP) to refine the feature maps, relationship-aware module linking the affordances and corresponding objects to explore the relationships, and online sequential extreme learning machine auxiliary attention module focusing on individual affordances further to assist relationship-aware module. The experimental results on two public datasets have shown the merits of each module and demonstrated the superiority of our relationship-aware network against the state of the arts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call