Abstract

With the wide existence of binary code, it is desirable to reuse it in many security applications, such as malware analysis and software patching. While prior approaches have shown that binary code can be extracted and reused, they are often based on static analysis and face challenges when coping with obfuscated binaries. This paper introduces trace-oriented programming (TOP), a general framework for generating new software from existing binary code by elevating the low-level binary code to C code with templates and inlined assembly. Different from existing work, TOP gains benefits from dynamic analysis such as resilience against obfuscation and avoidance of points-to analysis. Thus, TOP can be used for malware analysis, especially for malware function analysis and identification. We have implemented a proof-of-concept of TOP and our evaluation results with a range of benign and malicious software indicate that TOP is able to reconstruct source code from binary execution traces in malware analysis and identification, and binary function transplanting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.