Abstract
Hardware trojan insertion and intellectual property (IP) theft are two major concerns when dealing with untrusted foundries. Most obfuscation techniques have a limited capability of addressing both vulnerabilities. Split manufacturing is designed to stop IP piracy and IC cloning, but it cannot deal with untargeted hardware Trojan insertion. Also, there are significant overheads involved with getting the highest level of protection from split manufacturing. Built-in self-authentication (BISA ) is a low-cost technique for preventing and detecting hardware Trojan insertion, but is vulnerable to IP piracy , IC cloning, or redesign attacks, especially on original circuitry. By combining BISA with split manufacturing, it is not only possible to defeat these attacks, but also strengthen protections and lower the cost of split manufacturing as well. The resulting combined technique is called obfuscated BISA (OBISA ). In this chapter, the reader can expect to learn: (1) backgrounds on BISA as well as its existing problems and weakness; (2) two separate approaches for OBISA, based on the trade-offs between security and computational/fabrication costs involved; (3) implementation flow for both approaches; and (4) their design issues, trade-offs, and potential attacks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.