Abstract

65 Background: Obesity is increasingly prevalent and viewed as a critical co-factor in many pathologic conditions due to metabolic, inflammatory and immune perturbations. We performed a multi-species evaluation of the impact of obesity T cell effector functions and markers of immune exhaustion. Methods: We examined the impact of obesity on PD-1 and T cell-mediated responses across different pre-clinical models (tumor, infection, and autoimmune encephalomyelitis [EAE]) and species (mouse, dog, non-human primate, and human). Results: CD4 and CD8 T cells from obese mice, dogs, non-human primates and humans displayed increases in memory T cells and PD-1 expression, as well as impaired proliferative responses compared to lean controls, indicating a greater degree of T cell exhaustion at baseline. Following immunization with myelin oligodendrocyte glycoprotein, obese mice were resistant to induction of EAE, correlating with reduced antigen-specific CD4 T cells in the central nervous system. Administration of anti-PD-1 resulted in restoration of EAE and increased antigen-specific T cell numbers in obese mice. Tumors in obese mice exhibited accelerated growth compared to lean mice, and T cells displayed higher PD-1 expression correlating with RNAseq/molecular signatures of exhaustion compared to tumor-bearing lean mice. PD-1 blockade resulted in marked anti-tumor effects only in obese mice, and not lean. Impaired viral resistance to murine cytomegalovirus (MCMV) resulted was seen in obese mice, associated with increased PD-1/PD-L1 expression, which was reversible by PD-1/PD-L1 blockade. Conclusions: Obesity results in an increase in PD-1/PD-L1 expression and inhibition of T cell responses across species, and blockade not only reverses this inhibition but also leads to markedly augmented T cell effector responses compared to lean counterparts where no effects were observed. These results highlight how the immune system has evolved to control T cell responses using checkpoints contingent on dynamic host conditions and have translational relevance for predicting both efficacy and toxicity in clinical immuno-oncology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.