Abstract
BackgroundObesity is associated with diastolic dysfunction, lower maximal myocardial blood flow, impaired myocardial metabolism and increased risk of heart failure. We examined the association between obesity, left ventricular filling pressure and myocardial structure.MethodsWe performed histological analysis of non-ischemic myocardium from 57 patients (46 men and 11 women) undergoing coronary artery bypass graft surgery who did not have previous cardiac surgery, myocardial infarction, heart failure, atrial fibrillation or loop diuretic therapy.ResultsNon-obese (body mass index, BMI, ≤30 kg/m2, n=33) and obese patients (BMI >30 kg/m2, n=24) did not differ with respect to myocardial total, interstitial or perivascular fibrosis, arteriolar dimensions, or cardiomyocyte width. Obese patients had lower capillary length density (1145±239, mean±SD, vs. 1371±333 mm/mm3, P=0.007) and higher diffusion radius (16.9±1.5 vs. 15.6±2.0 μm, P=0.012), in comparison with non-obese patients. However, the diffusion radius/cardiomyocyte width ratio of obese patients (0.73±0.11 μm/μm) was not significantly different from that of non-obese patients (0.71±0.11 μm/μm), suggesting that differences in cardiomyocyte width explained in part the differences in capillary length density and diffusion radius between non-obese and obese patients. Increased BMI was associated with increased pulmonary capillary wedge pressure (PCWP, P<0.0001), and lower capillary length density was associated with both increased BMI (P=0.043) and increased PCWP (P=0.016).ConclusionsObesity and its accompanying increase in left ventricular filling pressure were associated with lower coronary microvascular density, which may contribute to the lower maximal myocardial blood flow, impaired myocardial metabolism, diastolic dysfunction and higher risk of heart failure in obese individuals.
Highlights
The increasing prevalence of obesity is a major health concern
In the present study we show that, in contrast to the effects of age, diabetes and the metabolic syndrome, obesity and its accompanying increase in left ventricular (LV) filling pressure were associated with lower coronary microvascular density that may contribute to the impaired maximal myocardial blood flow, diastolic dysfunction and increased risk of heart failure in obese individuals
We confirmed the well-established association between body mass index (BMI) and diastolic dysfunction [1,2,3], and we report for the first time that increased BMI and its accompanying increase in LV filling pressure were associated with lower coronary microvascular density and increased diffusion radius
Summary
Increased body mass index (BMI) has a wellestablished association with diastolic dysfunction and risk of heart failure, and diastolic dysfunction is a precursor to heart failure [1,2,3]. Other mechanisms by which BMI may impact on diastolic function and risk of heart failure include altered myocardial structure, neurohormonal activation and altered myocardial metabolism [4,7,8,9]. Obesity is associated with diastolic dysfunction, lower maximal myocardial blood flow, impaired myocardial metabolism and increased risk of heart failure. We examined the association between obesity, left ventricular filling pressure and myocardial structure. Conclusions: Obesity and its accompanying increase in left ventricular filling pressure were associated with lower coronary microvascular density, which may contribute to the lower maximal myocardial blood flow, impaired myocardial metabolism, diastolic dysfunction and higher risk of heart failure in obese individuals
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.