Abstract

ObjectiveObesity is associated with an increased risk of many metabolic disorders, including non-alcoholic fatty liver disease (NAFLD). However, the underlying mechanisms remain poorly understood. Recent studies have demonstrated that MicroRNA-mediated gene silencing plays an important role in hepatic triglyceride (TG) metabolism. In the present study, we aimed to investigate the pathological function of miR-361-5p in the development of NAFLD. MethodsExpression levels of miR-361-5p was determined by quantitative real-time PCR in livers of obese mice and NAFLD patients. Liver tissues from mice with miR-361-5p overexpression or inhibition were collected and analyzed by TG contents, gene expression profile. ResultsExpression of miR-361-5p was increased in the livers of two obese mouse models and NAFLD subjects. Overexpression of miR-361-5p in C57BL/6 mice led to hepatosteatosis, whereas inhibition of miR-361-5p expression in db/db mice improved TG accumulation and insulin sensitivity. Mechanistically, we identified Sirt1 as a direct target gene of miR-361-5p and re-introduction of Sirt1 largely abolished the metabolic action of miR-361-5p. ConclusionsOur results demonstrated the role of miR-361-5p in the regulation of hepatic TG homeostasis, which may provide potential therapeutic target for hepatosteatosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.