Abstract

An obesity-induced diabetes model using genetically normal mouse strains would be invaluable but remains to be established. One reason is that several normal mouse strains are resistant to high-fat diet-induced obesity. In the present study, we show the effectiveness of gold thioglucose (GTG) in inducing hyperphagia and severe obesity in mice, and demonstrate the development of obesity-induced diabetes in genetically normal mouse strains. GTG treated DBA/2, C57BLKs, and BDF1 mice gained weight rapidly and exhibited significant increases in nonfasting plasma glucose levels 8-12 weeks after GTG treatment. These mice showed significantly impaired insulin secretion, particularly in the early phase after glucose load, and reduced insulin content in pancreatic islets. Interestingly, GTG treated C57BL/6 mice did not become diabetic and retained normal early insulin secretion and islet insulin content despite being as severely obese and insulin resistant as the other mice. These results suggest that the pathogenesis of obesity-induced diabetes in GTG-treated mice is attributable to the inability of their pancreatic β-cells to secrete enough insulin to compensate for insulin resistance. Mice developing obesity-induced diabetes after GTG treatment might be a valuable tool for investigating obesity-induced diabetes. Furthermore, comparing the genetic backgrounds of mice with different susceptibilities to diabetes may lead to the identification of novel genetic factors influencing the ability of pancreatic β-cells to secrete insulin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.