Abstract

Diabesity-associated metabolic stresses modulate the development of Alzheimer’s disease (AD). For further insights into the underlying mechanisms, we examine whether the genetic background of APPswe/PS1dE9 at the prodromal stage of AD affects peripheral metabolism in the context of diabesity. We characterized APPswe/PS1dE9 transgenic mice treated with a combination of high-fat diet with streptozotocin (HFSTZ) in the early stage of AD. HFSTZ-treated APPswe/PS1dE9 transgenic mice exhibited worse metabolic stresses related to diabesity, while serum β-amyloid levels were elevated and hepatic steatosis became apparent. Importantly, two-way analysis of variance shows a significant interaction between HFSTZ and genetic background of AD, indicating that APPswe/PS1dE9 transgenic mice are more vulnerable to HFSTZ treatment. In addition, body weight gain, high hepatic triglyceride, and hyperglycemia were positively associated with serum β-amyloid, as validated by Pearson’s correlation analysis. Our data suggests that the interplay between genetic background of AD and HFSTZ-induced metabolic stresses contributes to the development of obesity and hepatic steatosis. Alleviating metabolic stresses including dysglycemia, obesity, and hepatic steatosis could be critical to prevent peripheral β-amyloid accumulation at the early stage of AD.

Highlights

  • Alzheimer’s disease (AD) involves aberrant protein processing and is characterized by excessive accumulation of β-amyloid (Aβ), which is derived from cleavage of the amyloid precursor protein (APP) [1]

  • high-fat diet with streptozotocin (HFSTZ) resulted in significantly increased fasting blood glucose levels in both WT and APPswe/PS1dE9 transgenic (AD) mice 3 weeks after STZ injection (Fig 1A)

  • Two-way analysis of variance (ANOVA) analysis indicated that the interaction of genetic type difference (APPswe/PS1dE9 vs. WT) and induced metabolic disorder (NCD vs. HFSTZ) was associated with increased fasting blood glucose (F interaction (1, 75) = 6.641, p < 0.05) and glucose intolerance (F interaction (1, 41) = 7.966, p < 0.01)

Read more

Summary

Introduction

Alzheimer’s disease (AD) involves aberrant protein processing and is characterized by excessive accumulation of β-amyloid (Aβ), which is derived from cleavage of the amyloid precursor protein (APP) [1]. 99% of AD patients have the sporadic form of the disease. The environmental risk factors for sporadic AD are believed to include insulin resistance-related diseases, such as type 2 diabetes mellitus, obesity, non-alcoholic fatty liver disease, and metabolic syndrome [2,3,4,5,6]. Intact insulin and insulin-like growth factor 1 (IGF-1) signal transduction in the central nervous system (CNS) may preserve normal brain structure and function by attenuating tau protein hyperphosphorylation, Aβ accumulation, and neuronal death [7]. Systemic insulin signaling plays a major role in nutrient metabolism. The role of systemic insulin resistance in AD pathogenesis remains controversial and is currently under intensive investigation [8, 9]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call