Abstract

Fat cells-derived extracellular vesicles (FC-EVs) play a role in regulating the tumor microenvironment in cancers by transporting RNAs. MicroRNAs (miRNAs) are vital regulators of cancer development. This study was conducted to explore the role of FC-EVs in the proliferation and migration of non-small cell lung cancer (NSCLC) cells, providing targets for NSCLC treatment. The obese mouse model was established via high-fat diet (HFD), followed by separation and characterization of FC-EVs (HFD-EVs). The levels of miR-99a-5p, precursor-miR-99a-5p, and heparan sulfate-glucosamine 3-sulfotransferase 3B1 (HS3ST3B1) were measured by RT-qPCR or Western blot assay. Cell proliferation and migration were evaluated by 3-(4, 5-dimethylthiazol- 2-yl)-2, 5-diphenyltetrazolium bromide and wound healing assays. The expression of Cy3-labeled miR-99a-5p in A549 cells (one NSCLC cell line) was observed via confocal microscopy. The binding of miR-99a-5p to HS3ST3B1 was analyzed by the dual luciferase assay. Rescue experiments were performed to confirm the role of HS3ST3B1 in NSCLC cells. miR-99a-5p was upregulated in adipose tissues, FCs, and HFD-EVs. HFD-EVs mitigated the proliferation and migration of NSCLC cells. HFD-EVs transported miR-99a-5p into A549 cells, which upregulated miR-99a-5p expression and inhibited HS3ST3B1 expression in A549 cells. HS3ST3B1 overexpression reversed the inhibition of HFD-EVs on the proliferation and migration of NSCLC cells. HFD-EVs transported miR-99a-5p into NSCLC cells and inhibited HS3ST3B1, thereby inhibiting proliferation and migration of NSCLC cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call