Abstract
Previous functional magnetic resonance imaging (fMRI) studies have showed obesity (OB)-related alterations in intrinsic functional connectivity (FC) within and between different resting-state networks (RSNs). However, few studies have examined dynamic functional connectivity (DFC). Thus, we employed resting-state fMRI with independent component analysis (ICA) and DFC analysis to investigate the alterations in FC within and between RSNs in 56 individuals with OB and 46 normal-weight (NW) controls. ICA identified six RSNs, including basal ganglia (BG), salience network (SN), right executive control network/left executive control network, and anterior default-mode network (aDMN)/posterior default-mode network. The DFC analysis identified four FC states. OB compared with NW had more occurrences and a longer mean dwell time (MDT) in state 2 (positive connectivity of BG with other RSN) and also had higher FC of BG-SN in other states. Body mass index was positively correlated with MDT and FCs of BG-aDMN (state 2) and BG-SN (state 4). DFC analysis within more refined nodes of RSNs showed that OB had more occurrences and a longer MDT in state 1 in which caudate had positive connections with the other network nodes. The findings suggest an association between caudate-related and BG-related positive FC in OB, which was not revealed by traditional FC analysis, highlighting the utility of adding DFC to the more conventional methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.