Abstract

Raney nickel, a highly reactive and air-sensitive solid, if prepared and investigated under oxygen-free conditions, exhibits interesting catalytic properties. Using photoelectron spectroscopy for real-time gas analysis in a flow reactor, the following results are obtained with alkyl and acylhalides: Dehydrohalogenation temperatures are lowered relative to thermal HHal elimination up to 350 K. Monochloro and bromo propanes and butenes yield propene and butadiene, respectively. 1,1-Dichloro ethane or 1,1-dibromo propane only split off one HHal and form chloroethene or 1-bromopropene-2. HCl elimination from 2-methyl propionic acid chloride, expectedly, produces dimethyl ketene. Most interesting, however, is the ring opening of monobromo cyclobutane to 1-bromo-butene-3, observed already at room temperature, which strongly suggests the intermediate formation of a chemisorbed surface carbene at Raney nickel. The formation of hexadiene-1,5 as a by-product in the HCl elimination of 1-chloropropane, i. e. a surface carbene dimer, indicates their presence also in other dehydrohalogenations heterogeneously catalyzed by Raney nickel.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.