Abstract

Integral formulas are presented for approximating the surface gradient (of a scalar function given on a surface) and divergence (of a tangent vector field given on a surface) that are analogs of the well-known formulas for the derivatives of a function on a plane. Estimates of the error in the approximation of these functions are obtained. The question of subsequent approximation of the integrals that give expression for the surface gradient and divergence by quadrature sums over the values of the function under study at the nodes selected on the cells of the unstructured grid approximating the surface is also considered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.