Abstract

The requirement of calcium ion (Ca(2)(+)) entry for neutrophil NADPH oxidase (NOX2) regulation is clearly established. However, its role in the signaling pathway leading to NOX2 activation is still elusive. 1-oleoyl-2-acetyl-sn-glycerol (OAG) causes an increase in NOX2 activity and has been shown to directly modulate Ca(2)(+) channels unrelated to the well-known store-operated Ca(2)(+) entry (SOCE) mechanism. In our study, we have investigated the potential role of OAG in Ca(2)(+) influx-mediated NOX2 activity in neutrophil-like-differentiated HL-60 cells to further characterize second signals involved in the regulation of NOX2. OAG inhibited fMLF- and thapsigargin-induced Ca(2)(+) entry, a phenomenon that was not restored by protein kinase C (PKC) or PI3K blockade. Addition of OAG resulted in a rapid decrease of maximal intracellular Ca(2)(+) concentration induced by thapsigargin. Both results suggest that OAG has an inhibitory effect, independent of PI3K and PKC, on the regulation of SOCE. In contrast to SOCE inhibition, OAG-induced NOX2 activation was mediated by PKC and PI3K. Our data establish that both kinases exert their effects through the regulation of Rac2 activity. In addition, OAG potentiated the effect of fMLF on the activation of NOX2 and led to a discernible activity of NOX2 upon thapsigargin stimulation. In conclusion, our results demonstrate that an additional PKC- and/or PI3K-dependent signal may act in synergy with Ca(2)(+) influx to trigger NOX2 activation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.