Abstract
BackgroundChildhood maltreatment (CM) is a major psychiatric risk factor and leads to long-lasting physical and mental health implications throughout the affected individual’s lifespan. Nonetheless, the neuroanatomical correlates of CM and their specific clinical impact remain elusive. This might be attributed to the complex, multidimensional nature of CM as well as to the restrictions of traditional analysis pipelines using nosological grouping, univariate analysis and region-of-interest approaches. To overcome these issues, we present a novel transdiagnostic and naturalistic machine learning approach towards a better and more comprehensive understanding of the clinical and neuroanatomical complexity of CM.MethodsWe acquired our dataset from the multi-center European PRONIA cohort (www.pronia.eu). Specifically, we selected 649 male and female individuals, comprising young, minimally medicated patients with clinical high-risk states for psychosis as well as recent-onset of depression or psychosis and healthy volunteers. As part of our analysis approach, we created a new Matlab Toolbox, which performs multivariate Sparse Partial Least Squares Analysis in a robust machine learning framework. We employed this algorithm to detect multi-layered associations between combinations of items from the Childhood Trauma Questionnaire (CTQ) and grey matter volume (GMV) and assessed their generalizability via nested cross-validation. The clinical relevance of these CM signatures was assessed by correlating them to a wide range of clinical measurements, including current functioning (GAF, GF), depressivity (BDI), quality of life (WHOQOL-BREF) and personality traits (NEO-FFI).ResultsOverall, we detected three distinct signatures of sexual, physical and emotional maltreatment. The first signature consisted of an age-dependent sexual abuse pattern and a corresponding GMV pattern along the prefronto-thalamo-cerebellar axis. The second signature yielded a sex-dependent physical and sexual abuse pattern with a corresponding GMV pattern in parietal, occipital and subcortical regions. The third signature was a global emotional trauma signature, independent of age or sex, and projected to a brain structural pattern in sensory and limbic brain regions. Regarding the clinical impact of these signatures, the emotional trauma signature was most strongly associated with massively impaired state- and trait-level characteristics. Both on a phenomenological and on a brain structural level, the emotional trauma pattern was significantly correlated with lower levels of functioning, higher depression scores, decreased quality of life and maladaptive personality traits.DiscussionOur findings deliver multimodal, data-driven evidence for a differential impact of sexual, physical and emotional trauma on brain structure and clinical state- and trait-level phenotypes. They also highlight the multidimensional nature of CM, which consists of multiple layers of highly complex trauma-brain patterns. In broader terms, our study emphasizes the potential of machine learning approaches in generating novel insights into long-standing psychiatric topics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.