Abstract
The kinetics for O2 oxidation of individual graphite and graphene platelet nanoparticles (NPs) were studied as a function of temperature (1200–2200 K) at varying oxygen partial pressures, using a single nanoparticle mass spectrometry method. NP temperature (TNP) was measured by measuring the NP thermal emission spectra during the kinetics studies. The initial oxidation efficiency is found to peak in the 1200–1500 K range, dropping by an order of magnitude as TNP was increased above 2000 K. There were large NP-to-NP variations in the oxidation rates, attributed to variations in the NP surface structure. In addition, the oxidation efficiencies evolved, non-monotonically, as the NPs reacted, decreasing by factors of between 10 and 300. This evolution of reactivity is attributed to changes in the NP surface structure due to the combination of oxidation and annealing. The optical properties, including wavelength dependence of the emissivity and the absorption cross section for the 532 nm heating laser, also tended to evolve as the NPs oxidized, but differently for each individual NP, presumably reflecting differences in the initial structures and their evolution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.